There and back again: bridging meso- and nanoscales to understand lipid vesicle patterning
Julie Cornet, Nelly Coulonges, Weria Pezeshkian, Mael Penissat-Mahaut, Hermes Desgrez-Dautet, Siewert J. Marrink, Nicolas Destainville, Matthieu Chavent, Maniel Manghi
Abstract: We describe a complete methodology to bridge the scales between nanoscale Molecular Dynamics and (micrometer) mesoscale Monte Carlo simulations in lipid membranes and vesicles undergoing phase separation, in which curving molecular species are furthermore embedded. To go from the molecular to the mesoscale, we notably appeal to physical renormalization arguments enabling us to rigorously infer the mesoscale interaction parameters from its molecular counterpart. We also explain how to deal with the physical timescales at stake at the mesoscale. Simulating the so-obtained mesoscale system enables us to equilibrate the long wavelengths of the vesicles of interest, up to the vesicle size. Conversely, we then backmap from the meso- to the nano- scale, which enables us to equilibrate in turn the short wavelengths down to the molecular length-scales. By applying our approach to the specific situation of the patterning of a vesicle membrane, we show that macroscopic membranes can thus be equilibrated at all length-scales in achievable computational time offering an original strategy to address the fundamental challenge of time scale in simulations of large bio-membrane systems.